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ABSTRACT: Traditional forensic methods that highlight the spatial distribution of properties such as blood and fingerprints have two main dis-
advantages: they often apply chemicals that may influence further analyses, and they cannot easily be modified to search for new compounds ⁄ proper-
ties. A new instrument (called PryJector) avoids these problems by dynamically projecting back onto the surface under study spatially distributed
information of compounds ⁄ properties (chemical images) obtained from multivariate analysis of hyperspectral images. Selectivity to target
compounds ⁄ properties is ensured by multivariate modeling which makes the instrument much more flexible compared to traditional methods. The
functionality of the PryJector is demonstrated in an application related to the detection of counterfeit pharmaceuticals where compounds otherwise
indistinguishable to the human eye are made clearly visible by projection of false-colored chemical images. The PryJector is shown to be a non-
invasive and very flexible instrument for highlighting spatial distributions of various compounds ⁄ properties.
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Highlighting the in situ spatial distribution of chemical and bio-
logical information such as the presence of blood (1), saliva (2),
semen (3), narcotics (4), and gun powder (5–7) on objects from
crime scenes has become an important tool in forensic analysis.
Existing techniques typically achieve this effect by using fluores-
cence or applying chemiluminescent dyes onto object surfaces that
react with target compounds. Fluorescence in the visible part of the
spectrum is often achieved by illuminating the surface with ultravi-
olet light (8). When inspected, areas on the objects containing the
target compounds or properties emit visible light and are easily
seen by the investigator. However, the use of dyes and other chem-
icals for highlighting target compounds or properties has two main
disadvantages. The first one is that the dyes may alter the material
such that further analyses are made more difficult. For instance,
when luminol (9) is used for detection of blood, it may reduce the
amount of DNA that can be recovered. The second important dis-
advantage with many standard techniques is that they are usually
very difficult to modify to achieve selectivity for a new property or
compound. Therefore, a more flexible, general, and noninvasive
approach is needed. Here, we present an alternative approach based

on using a novel combination of existing technologies: chemomet-
ric analysis of spectroscopic profiles at different spatial locations
(hyperspectral imaging) performed dynamically and false-color pro-
jection of the detection ⁄ classification result back onto the scene to
highlight what is otherwise invisible to the naked eye.

Detection of various chemical compounds or properties on sur-
faces can rapidly be performed using hyperspectral technology.
Multispectral and hyperspectral cameras record scenes at multiple
wavelengths which result in a three-dimensional (3D) data array,
the hypercube, where a continuous and detailed radiance or reflec-
tance spectrum for each pixel is stored. Such spectra may contain
chemical, physical, and ⁄or biological information that can be
extracted using various mathematical and statistical techniques. Of
particular interest is the use of chemometric methods (10,11) for
multicomponent analysis and model calibration. These computa-
tional methods are used to generate so-called chemical images that
show the spatial distribution of chemical and physical information.
Hyperspectral technology originated within the field of remote
sensing; however, it is increasingly being used in different areas
such as chemistry, biology, and medicine because it effectively
combines imaging with spectroscopy.

Most existing hyperspectral cameras are based on either push-
broom spectrograph or wavelength filtering technology. For push-
broom scanners like the one used in this article, the camera fore
optic is imaging the scene onto a slit that defines the linear field of
view (FOV) of the instrument. It then collimates the light before
the dispersive element. The dispersive element (in our case a trans-
mission grating) separates the light into different wavelengths that
are focused onto a 2D detector array by means of an objective lens.
The net effect of the optics is that each pixel column on the
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detector array corresponds to a spatial pixel position in the scene,
and the different pixels in a particular column are receiving photons
from a specific wavelength interval (spectral band), thus in total
generating a full spectrum for each spatial pixel position.

To get a 2D image of the scene, some sort of scanning is needed,
typically implemented by translation of the camera (or the scene)
or rotation of the camera. The resulting image data can be consid-
ered as multiple separate monochrome 2D images of the scene (one
for each spectral channel) or alternatively that every pixel in the
image contains one full radiance or reflectance spectrum.

For this type of scanner, the full spectrum in a particular pixel is
acquired simultaneously, ensuring the integrity of the spectral data.

The other main approach for hyperspectral imaging is based on
using a tunable bandpass filter in front of the camera where a
whole 2D image for each wavelength is recorded at a time. This
slices the hypercube in a different way from using a push-broom
scanner camera. Each [spatial · spatial] matrix slice is acquired by
stepping the bandwidth filter one wavelength after another. Exam-
ples of bandpass filters used in hyperspectral cameras are the acou-
sto-optical tunable filter (AOTF; [12]) and the liquid crystal tunable
filter (LCTF). AOTF is a solid-state electronically tunable bandpass
filter where acoustic waves produce index of refraction changes
(13–15). The LCTF is using a stack of polarizers and tunable retar-
dation liquid crystal plates (16–19) to achieve bandpassing of the
incoming light.

Over the last 10 years, there has been a significant increase in
the number of articles published using chemical imaging for foren-
sic purposes. A majority of these contributions have been in the
area of fingerprint detection (20–32). In most of these cases, chemi-
cal imaging has been used to enhance weak and borderline finger-
prints already treated with traditional methods, such as ninhydrin
and cyanoacrylate. In Ng et al. (21), Fourier Transform Infrared-
based chemical imaging was used to detect various substances
contained in fingerprints, such as explosives, gunshot residues, and
illegal substances. Detection of explosive residues in fingerprints was
also demonstrated in Emmons et al. (24) using Raman chemical
imaging. Examples of other forensic applications using chemical
image analysis are classification of man-made bicomponent fibers
(25), document analysis where spectra were used to determine the
sequence of intersecting lines produced by ballpoint pens and laser
printers (26), analysis of paints, inks, and firearm propellants (27)
in the UV–Vis–NIR and IR regions, the detection of mass graves
using remote sensing (airborne and satellite imagery) in the UV–
Vis–NIR range (28), the use of Raman imaging to detect different
types of condom lubricant compounds (29), and the detection and
visualization of foreign matter in human tissue (30) using near-
infrared chemical imaging. In addition, the application of chemical
imaging techniques such as time-of-flight secondary ion mass spec-
trometry has also been reported in the literature, here for detecting
various bioagents (31). This work also demonstrated the use of
energy dispersive X-ray spectroscopy for detection of bioagents that
enables elemental analysis and chemical characterization. Most of
the articles published are not using any chemometric or multivari-
ate methods for analysis. However, among those that do, principal
component analysis (PCA) and hierarchical clusterings are the most
commonly used methods.

Regardless of the working principle, once the spectra from the
hypercube become available, multivariate analysis can take place.
Both unsupervised (explorative) and supervised (classification and
regression) modeling are possible. The generated chemical image is
typically presented as a classification of different compound classes
or their estimated concentration levels. The usual way to view the
chemical image is on a computer screen. However, for applications

where interactive manual inspection of a surface is of importance,
this may be a hindrance. A more intuitive approach is to make the
chemical information computed from the spectra dynamically avail-
able onto the surface under inspection and aligned with the struc-
tural features from where it originated. A way to accomplish this is
to use an ordinary computer projector or a laser to dynamically
project and update the calculated chemical images back onto the
original surface. To our knowledge, no other chemical imaging sys-
tems reported in the literature make use of this unique feature that
forms the core idea behind the new instrument here referred to as a
PryJector. False coloring can be used to indicate different classes
or levels of concentrations of a compound. The effect is that other-
wise invisible features on surfaces to the naked eye become clearly
visible in situ.

Of particular interest is using a PryJector for rapid updating of
chemical information on surfaces. Many real-time applications
involving handling of objects on surfaces would benefit from such
an instrument. The scan speed achievable with this first prototype
system (7.5 cm ⁄ sec) should be adequate for many applications, and
three to four times higher scan speed is possible with currently
available sensor technology, making such a system potentially use-
ful in real-life applications.

The aim of this article is to (i) demonstrate how the PryJector
technology works and (ii) investigate how it can facilitate manual,
interactive, and in situ forensic investigations of surfaces by utiliz-
ing the key advantages of the new instrument: intuitive visualiza-
tion of chemical information on surfaces and increased flexibility
with respect to new target properties to visualize. The core property
of the PryJector is dynamically updated projection of false-colored
chemical images onto surfaces that are registered to the features
under investigation.

Technology

A PryJector can be assembled into different configurations based
on its usage and type of hyperspectral system. In this article, we

FIG. 1—The table top version of the PryJector.
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focus on a table top version using push-broom technology. The
basic setup of the experiment is shown in Fig. 1 where the camera
and light source are mounted on a common translation stage. This
configuration is designed to study objects positioned on a flat table,
such as clothes, documents, food, pharmaceuticals, and art work.
Another possible configuration for a PryJector is based on a rota-
tion stage that is useful for scanning larger scenes. Only the table
top version will be discussed here.

In this experiment, a HySpex SWIR-320i hyperspectral camera
from Norsk Elektro Optikk AS was used. The instrument is a
push-broom scanner based on an InGaAs focal plane array (FPA)
with a spectral range of 930–1670 nm. The number of across track
spatial pixels is 320, and the number of recorded wavelengths is
148. The spectral sampling interval is 5 nm, and the pixel FOV is
0.75 mrad. The frame rate for the system used is 100 fps where
one frame on the FPA contains all the 148 wavelength bands from
a single spatial line (320 pixels). The HySpex camera was spec-
trally and radiometrically calibrated before the experiment by
means of narrow band laser sources (spectral calibration) and a
calibrated integrated sphere (radiometric calibration). The sensor
dark offset matrix is automatically acquired for each image by
means of a built-in electromechanical shutter. The spectra generated
by such an instrument are therefore representing the absolute
radiance in W ⁄ (m2 nm sr). InGaAs arrays inherently suffer from a
certain fraction of bad pixels, such as hot, dead, and noisy pixels
(typically in the range 0.5–1%). These pixels are characterized
in beforehand and interpolated using the nearest neighbors in the
spectral direction.

A custom-made 150-W lamp with a high light intensity both in
the visible and infrared (400–2500 nm) region is used to illuminate
the samples. To minimize distraction from this light source and
enhance contrast when performing projection (in the visible part of
the spectrum), a long wave pass filter with cut-on at 850 nm was
used to almost completely block all wavelengths from below
800 nm. Attached at the same height as the camera is an ordinary
color computer projector (Hewlett-Packard MP3222 with XGA,
1024 · 768 and 2000 lumens; Hewlett-Packard Co., Palo Alto,
CA) that projects a color image down onto the total working space
of the sample table (23.5 · 60.0 cm). The projector is updating the
chemical images continuously onto the table ⁄ samples using false
colors. No special preference for color combinations is made as
long as they appear different from each other and the surrounding
environment. Because of the brightness of the projected image,
however, there are no problems with visually discriminating a
point which is highlighted by the projector from one which is not.
Here, we have decided to use basic colors such as red, green, blue,
and yellow for the different classes. Alignment of the projection
system with the hyperspectral image (or scene) has only been per-
formed with limited precision (typically up to a few pixels misreg-
istration, depending on the position in the FOV). Coregistration
with precision at the pixel (or subpixel) level is indeed possible,
but was not the main focus of the current work.

The camera is located 100 cm from the scene, yielding a pixel
size of 0.75 mm. At 100 Hz scan rate, this corresponds to a scan
speed of 7.5 cm ⁄ sec. The integration time used was typically
1 msec, whereas the frame time was 10 msec (corresponding to
100 Hz scan rate), so if a camera with faster readout is used, the
scan speed can in principle be increased by a factor 10 with the
same light level and intensity. Similar InGaAs FPAs with three to
four times higher frame rate are currently available.

For the PryJector setup, the camera and light source are mounted
on the translation stage 1 m above the scene. The scene and projec-
tor are static. The camera and projection system are operating

continuously in both scan directions, ensuring a rapid update of the
projected classification results.

It might be possible in future developments of the PryJector to
significantly increase the scanning speed by employing a rotary
mirror setup instead of scanning the camera and light source.

The HySpex data acquisition software has the option to perform
real-time correction of the images. The real-time correction proce-
dure includes subtraction of dark offset, spectral and radiometric
calibration as well as bad pixel interpolation before storing and ⁄ or
analyzing the data on the fly. The output signal available from each
spatial pixel in real time is proportional to radiance and can be ana-
lyzed directly without need for a time-consuming postprocessing
step to generate calibrated image data ⁄ spectra.

The recorded frames from the HySpex SWIR-320i are sent to a
quad core Intel computer running at 2.66 GHz (2 GB RAM; Intel
Corp., Santa Clara, CA) and analyzed by the multivariate software
that generates the chemical images. The data analysis software for
the system is currently written in Matlab (The MathWorks, Inc.,
Natick, MA), whereas the HySpex data acquisition software is writ-
ten in Visual C++.

In summary, our push-broom system is different from other
existing hyperspectral system in the following ways:

• It is in a continuously scanning mode.
• While in this mode, the chemical image (really the chemical line

image) is continuously computed and updated.
• This continuous operation is connected to an ordinary computer

projector that projects on-the-fly computed false-colored chemical
images back onto the surface.

• The projected image is registered to the original features on the
surface.

This dynamic projection of the chemical images provides the
chemical information in situ to the user while manually inspecting
the surface. This is a much more intuitive way of providing the
information than inspecting an off-line image on a computer moni-
tor. The core idea here is to facilitate how humans can interact with
surfaces in the most intuitive and informative way. Thus, the human
scale is an important element of the PryJector system. If a hyper-
spectral camera is used to inspect microscopic samples or structures
of large areas, using back projection becomes unnecessary and
meaningless. In such cases, inspecting a computer screen is suffi-
cient. However, in many applications, where the manual and inter-
active inspection of a surface is performed by a human, the PryJector
is designed to provide information about the surface distributions of
chemical and physical properties in a way which is natural for us.

Methods and Materials

Data Set

To investigate the usefulness of the new instrument, an applica-
tion related to the pharmaceutical industry is presented. In various
developing countries, there is high risk of obtaining counterfeit
pharmaceuticals which can result in medical problems or death
(33). The ability to rapidly distinguish real from fake medicines in
forensic and medical applications is therefore very important. Here,
we have focused on distinguishing different tablets that to the
naked eye appear very similar. The literature (34) has reported
positive results on using Raman and infrared spectroscopic tech-
niques to detect counterfeit pharmaceuticals. Here, we use a similar
approach to investigate the applicability of a PryJector instrument.

The data set used consists of four different types of organic non-
prescription pharmaceuticals in tablet form that are all used in pain
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relief: Paracet (active compound is Paracetamol), Pamol Smelt
(active compound is also Paracetamol), Ibux (active compound is
Ibuprofen), and Aspirin (active compound is acetylsalicylic acid).
Thus, the recorded pixels from the hyperspectral camera must be
separated into five different classes where the fifth class corre-
sponds to the background.

Four different hyperspectral images have been recorded: Image 1
(Fig. 2) that is used for calibration of the classification models and
Images 2, 3, and 4 are used for testing. In the calibration data set
in Image 1, the tablets are crushed into powder form. The reasons
for this are (i) crushing and good mixing of the powders improves
on any possible heterogeneity on tablet surfaces, (ii) powders have
much less specular reflectance than observed on smooth tablet sur-
faces, and (iii) powders can easily be distributed evenly over a
larger area with a simple geometry (like a rectangle) which makes
it easier when assigning class membership to pixels. None of the
chosen tablets for this experiment contained a separate protecting
coating layer which otherwise would have made crushing to
powder form much less useful.

Data Analytical Methods

To build predictive multivariate classification models, two differ-
ent methods were used: discriminant partial least squares (DPLSR)
regression (10) and a simplified version of the k-nearest neighbor
(k-NN) classification method (35) using the spectral angle mapper
(SAM; [36]) as distance measure. Here, the k-NN method is only
used with the k = 1 setting, that is, class membership of a new
input vector is determined by its SAM distance to its nearest neigh-
bor to one of the five class center vectors. The DPLSR method is
based on the PLS2 algorithm using multiple dependent variables
(referred to as the Y-variables). These Y-variables are contained in
a matrix which encode the different class memberships for each
object. The X-matrix contains the independent variables, that is, the
spectral intensities at different wavelengths, as columns. A binary
encoding is typically used where the Y column index signifies the
class index. An object belonging to class i thus contains 1 in col-
umn i for the matrix of dependent variables, and all other columns
are zero. The PLSR algorithm computes latent variables that are

directed along the maximum X–Y covariance (10). In prediction,
the class memberships are determined from which Y column index
corresponds to the largest value.

The k-NN method was used as a reference method to DPLSR.
From Image 1, spectra of each class were extracted and averaged.
This produced five mean spectra, each representing the center point
for each class. Classification is based on finding which mean vector
has the lowest SAM value to an input test spectrum.

The SAM measure is based on calculating the angle between
two spectra represented as the vectors s1 and s2. This is to mini-
mize the effect of variation of illumination on the spectra. The
SAM distance measure d is defined as d = cos)1(s1

Ts2 ⁄ (||s1|| ||s2||)).
By default, DPLSR or k-NN will force a new spectrum to be a

member of one of the k classes. This is undesirable for cases where
a spectrum belonging to an unknown class is encountered. In such
a case, the new spectrum should not be assigned to any of the tab-
let classes. To rectify this problem, the class prediction from
DPLSR or k-NN is further checked by calculating the Mahalanobis
(11) distance from the center of class k to the new spectrum. If this
distance is too large, the membership will be changed into the
background class, which means it will not be shown in the projec-
tion. The Mahalanobis cut-off values for each class have here been
determined by visual inspection of predicted chemical images
where the positions of the class pixels are known.

Validation

It is common to make use of cross-validation or independent test
sets to validate classification models. Because hyperspectral images
contain a large number of spectra, we have chosen to use indepen-
dent test set validation. Here, the following validation procedure
will only be used for the DPLSR method. The validation approach
being taken here can be explained as follows:

• A hyperspectral image (here Image 1) containing the different
classes are split into two different subsets. The split is performed
by randomly assigning spectra to the different subsets. The first
data set (A) contains 60% of all the spectra, the second (B) con-
tains 40%.

• Data set A is the calibration set on which the model parameters
are calculated for.

• Data set B is used as an independent validation set to determine
the optimal number of PLSR factors.

• Image 2 is used as a separate (and independent) test set onto
which the optimal PLSR model is applied.

The predictive ability of PLSR models based on a = 1, 2,...,
Amax factors is determined on 1500 randomly selected spectra (with
replacement) from data set B. This is performed 30 times for each
factor. The prediction error is recorded as the percentage of class
predictions that were wrong. Aopt corresponds to the optimal model
which has the smallest error. The maximum number of PLSR
factors tested for Amax is set to 20. In addition to the automatic
determination of the optimal number of PLSR factors above, we
also make use of visual inspection of the predicted class regions.
For hyperspectral images with known class regions, visual inspec-
tion of the results effectively determines whether the prediction
model is successful or not.

Setup and Analysis

All prediction models were constructed using Matlab 7.1 running
on both Windows XP and Linux operating systems (Ubuntu, http://
www.ubuntu.com). The Windows platform is used for the direct

FIG. 2—Image of the calibration data. Each rectangular area corre-
sponds to one of the four pharmaceuticals used (Paracet, Ibux, Pamol
Smelt, and Aspirin) in powder form.
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control and operation of the PryJector instrument. All off-line anal-
yses are performed on Linux workstations using in-house chemo-
metric software.

After inspecting the spectra for the different classes, it became
clear that significant area variations were present. These variations
are most likely dominated by differences in concentrations of the
compounds and are reduced by normalizing the spectra to unit area.

Results

Representative regions in Image 1 corresponding to the different
classes were selected (not shown). This resulted in 35,498 spectra
that were randomly split into two data sets A and B. Data set A
contains 21,299 spectra and data set B 14,199. The number of
spectra used from Image 2 is 10,626. Both independent test set and
visual inspection validation methods produce the same result:
Aopt = 4 optimal PLSR factors are needed for classification.

The overall prediction error for the test set (Image 2) is 1.4%.
The errors for the individual classes are as follows: 0.4% for class
1, 0.8% for class 2, 5.2% for class 3, 0.0% for class 4, and 1.3%
for class 5, that is, the background.

The predicted values for all the pixels in Image 1 and 2 are seen
in Fig. 3. A PCA of the normalized spectra for the calibration data
set confirms the highly predictive model that all the classes are
well separated from each other, see Fig. 4.

The corresponding error of using the simplified k-NN classifica-
tion method on Image 2 is 1.6%. The errors for the individual clas-
ses are as follows: 0.1% for class 1, 2.5% for class 2, 7.4% for
class 3, 0.7% for class 4, and 1.1% for class 5. The result of apply-
ing the simplified k-NN classification method to the whole of the
test image (Image 2) shows that it is comparable to PLSR in its
prediction ability. An advantage with the k-NN method is that it
was not necessary to perform any normalization prior to calculating
the class memberships. In real-time applications, any reduction in
the needed computation is an advantage.

In Fig. 5, the PLSR model is applied to a simulated situation
where the PryJector is used to discover the presence of hidden

pharmaceuticals. Here, eight white Paracet tablets are hidden under-
neath a covering layer of powdered sucrose. A brush is used to
uncover the tablets. Figure 5 shows hyperspectral recordings at four
different instances in time. The four panels show how the brush is
increasingly uncovering more hidden Paracet tablets as is indicated
by the projected red color. The panel sequence demonstrates the
intended interactivity with the PryJector. Because of current limita-
tions in hardware, each panel is not recorded in real time, but over
a interval of c. 10 sec, which still allows for interactive investiga-
tion of the scene.

Figure 6 shows how a PryJector projection appears to a user
when handling powders of various pharmaceuticals, in this case
Paracet (red color) and Pamol Smelt (green color). The left
panel displays the white powders without using the PryJector,
and it appears to the human eye as if only one kind of pharma-
ceutical is present. However, when the PryJector is switched on
(see right panel in Fig. 6), the spatial distribution of the two dif-
ferent types of pharmaceuticals is clearly revealed. Because of a
combination of projector misalignment and a shadow effect,
regions along the rim of the powder distributions are not
highlighted.

Discussion

The table top PryJector instrument has been demonstrated to suc-
cessfully visualize to the user in situ localization of various proper-
ties (chemical, physical, or biological). In the application presented,
different pharmaceuticals that would for the naked eye be indistin-
guishable were identified and highlighted on a table.

Given that the compounds or properties of interest can be
detected by the hyperspectral camera and modeled using chemo-
metric methods, it is expected that the PryJector approach will be
useful for many forensic applications involving manual interaction
with surfaces. Of particular interest is using the instrument for
improving the manual inspection of clothes and other objects

FIG. 3—The optimal discriminant partial least squares (DPLSR) model is
here applied to all pixels in test set image (Image 2) showing the pharma-
ceuticals in tablet form (right panel). Left panel shows the DPLSR model
applied to all pixels, the hyperspectral image used in the calibration (Image
1), see also Fig. 2. Only a subset of the pixels in this image were used as
calibration data set.

FIG. 4—The left panel shows the scores plot of the two first principal
components of the normalized spectra. As can be seen, the different classes
are well separated. The right panel shows the corresponding mean spectra
for each class (offset values are added to each spectrum for visualization
purposes). Color coding is the same as for left panel: red is class 1, green
is class 2, blue is class 3, magenta is class 4, and black is class 5 (the
background).
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placed on a table. Because the investigator can rapidly switch
between a wide range of different chemometric models or automat-
ically search in a database of spectral signatures of interesting com-
pounds, the PryJector facilitates the search for various biological
and ⁄ or chemical traces that are relevant to an investigation. The
PryJector could also be useful for in situ fingerprint enhancement.
The literature contains several reports on how chemical imaging
can be used for this purpose, however, without the dynamic scan-
ning and projection provided by the PryJector. This could enable

rapid inspection of larger areas. Similarly, detection and visualiza-
tion of shoe marks may also be possible. Other applications may
be for highlighting marks and bruises on the skin. In other studies
(37–39), it is shown how spectroscopy in combination with mathe-
matical modeling can be used to predict the age of bruises. It may
therefore be possible to use chemical imaging to enhance ⁄visualize
bruises that are either invisible or difficult to detect by the naked
eye. Another forensic application of the PryJector is to facilitate the
detection and visualization of bone fragments on the ground.

FIG. 5—The optimal discriminant partial least squares model is here applied to a mix of powdered sugar and one of the tablets types used (Paracet). Eight
white Paracet tablets are initially hidden beneath a layer of powdered sugar. By manually using a brush, sugar powder is gradually removed, and the Paracet
is made interactively visible by the PryJector by projecting red colored light to pixels identified as belonging to the Paracet class. The sequence of images
from upper left to bottom right shows how the Paracet tablet gradually becomes uncovered.

FIG. 6—Prediction of tablet powder on a human hand. Left panel shows white powder without using the PryJector. Right panel shows how the PryJector
visualizes the types of compounds present in the powder. Paracet (red color) and Pamol Smelt (green color) powders are both present. The unclassified
regions along the rim of the powder distributions are as a result of shadow effects and misalignment between camera and projector.
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Preliminary results with dried animal bones demonstrate that this is
indeed possible.

Two other potential application areas for the PryJector are the
medical and defense ⁄ security fields. For instance, in medicine,
rapid inspection of the skin for cancer and tissue changes may be
possible. The instrument might also be helpful during surgery to
visualize the presence of cancers or toxic levels of various com-
pounds. In the military field, the PryJector might be used for locali-
zation of explosives and other dangerous materials. This would call
for an extension of the instrument to scan larger 3D areas for both
in- and outdoor conditions. Such an extension of the instrument is
indeed possible, however places a much greater demand on the
multivariate modeling, as well as the optical design. Various physi-
cal and optical effects in the scene can cause the multivariate mod-
els to fail, and therefore, new methods may be needed to handle
this.

Conclusion

The results of our experiments show that the PryJector instru-
ment facilitates manual inspection of a surface by dynamically
projecting the distribution of chemical and physical property dis-
tributions onto the same surface. In this respect, the PryJector
provides information about target properties visually in a way
which is similar to what is seen in traditional forensic methods
such as using, for example, chemiluminescent dyes to highlight
the distribution of blood on surfaces. However, in contrast to the
traditional methods, the PryJector is very flexible with respect to
new target properties to search for and highlight on surfaces.
This is because of the fact that the instrument is based on crea-
ting selectivity to target properties by multivariate and chemo-
metric modeling.
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